Code: IT3T3

II B.Tech - I Semester–Regular/Supplementary Examinations November 2018

PROBABILITY AND STATISTICS (INFORMATION TECHNOLOGY)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

a) If A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cup B) = \frac{1}{2}$.

Determine $P(A / B^{C})$

- b) If 'X' be a random variable then show that Var(aX+b)=a²Var(X)
- c) If 3 cars are selected from a lot of 6 cars containing 2 defective cars, find the expected number of defective cars.

d) If a poisson distribution is such that $\frac{3}{2}P(X = 1) = P(X = 3)$, find P(X ≥ 1).

- e) If X is a normal distribution with mean 30 and standard deviation 5. Find the probability that $26 \le X \le 40$
- f) If U={1, 3, 4} and V={2, 5}then find variance of sampling distribution of U-V.
- g) If we can assert with 95% that the maximum error is 0.05 and P=0.2, find the sample size.

- h) Define Type I and Type II errors
- i) Find the value in t-distribution, for $\alpha = 0.01$ with degrees of freedom $\nu = 14$.
- j) Find the value $F_{0.99}$ (10,12)
- k) Draw the table that used in One-way ANOVA.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

- 2. a) A consulting firm rents cars from three agencies , 30% from D, 20% from E and 50% from F agencies. If 10%, 15% and 5% of the cars have bad tires respectively from agencies D, E and F, what is the probability that a car with bad tires rented by the firm came from agency E?
 8 M
 - b) A random variable X has the following probability function

X	0	1	2	3	4	5	6	7	8
P(x)	$\frac{k}{45}$	$\frac{k}{15}$	<u>k</u> 9	$\frac{k}{5}$	$\frac{2 k}{45}$	$\frac{6 k}{45}$	$\frac{7 k}{45}$	$\frac{8 k}{45}$	$\frac{4 k}{45}$

Determine (i) value of k

(ii) mean

- (iii) variance of the distribution. 8 M
- 3. a) Given that the switchboard of a consultant's office receives on the average 0.8 calls per minute. Find the probability that

(i) there will be at least 2 calls

(ii) at most 4 calls in a given minute. 8 M

- b) If a random variable 'X' follows a normal distribution with mean 16.28 and standard deviation 0.12. Find the probabilities (i) P(16 < X < 16.5) (ii) P(X > 16.2) 8 M
- 4. a) A population consists of 3, 6, 9, 15 and 27. List all possible samples of size 2 which can be drawn without replacement from the population. Find the mean and standard deviation of the population and of Sampling distribution of means (\overline{x}) . 8 M
 - b) If a random sample of size 81 was taken whose variance is 20.25 and mean is 32 from a population, construct 98% confidence interval for population mean.
 8 M
- 5. a) 20 people were attacked by a disease and only 18 survived.
 Will you reject the hypothesis that the survival rate if attacked by this disease is 85% in favour of the hypothesis that is more at 5% level.
 8 M
 - b) To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measure the I.Q. The results are as follows:

Husbands										
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at $\alpha = 0.05$. (Assume, both the samples drawn from normal population). 8 M

6. The following are the weight losses of certain machine parts (in milligrams) due to friction, when 3 different lubricants were used under controlled conditions:

Lubricant A	Lubricant B	Lubricant C		
12.2	10.9	12.7		
11.8	5.7	19.9		
13.1	13.5	13.6		
11.0	9.4	11.7		
3.9	11.4	18.3		
4.1	15.7	14.3		

Test whether the differences among the 3 sample means can be attributed to chance at the level of significance 0.01. 16 M