Code: IT3T3
II B.Tech - I Semester-Regular/Supplementary Examinations November 2018

PROBABILITY AND STATISTICS (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \mathrm{x} 2=22 \mathrm{M}
$$

1.

a) If A and B are events with $P(A)=\frac{1}{3}, P(B)=\frac{1}{4}, P(A \cup B)=\frac{1}{2}$. Determine $P\left(A / B^{C}\right)$
b) If ' X ' be a random variable then show that $\operatorname{Var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{X})$
c) If 3 cars are selected from a lot of 6 cars containing 2 defective cars, find the expected number of defective cars.
d) If a poisson distribution is such that $\frac{3}{2} P(X=1)=P(X=3)$, find $\mathrm{P}(\mathrm{X} \geq 1)$.
e) If X is a normal distribution with mean 30 and standard deviation 5 . Find the probability that $26 \leq x \leq 40$.
f) If $\mathrm{U}=\{1,3,4\}$ and $\mathrm{V}=\{2,5\}$ then find variance of sampling distribution of U-V.
g) If we can assert with 95% that the maximum error is 0.05 and $\mathrm{P}=0.2$, find the sample size.
h) Define Type I and Type II errors
i) Find the value in t-distribution, for $\alpha=0.01$ with degrees of freedom $v=14$.
j) Find the value $F_{0.99}(10,12)$
k) Draw the table that used in One-way ANOVA.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) A consulting firm rents cars from three agencies, 30% from D, 20% from E and 50% from F agencies. If 10%, 15% and 5% of the cars have bad tires respectively from agencies D, E and F , what is the probability that a car with bad tires rented by the firm came from agency E ?
b) A random variable X has the following probability function

X	0	1	2	3	4	5	6	7	8
$\mathrm{P}(\mathrm{x})$	$\frac{k}{45}$	$\frac{k}{15}$	$\frac{k}{9}$	$\frac{k}{5}$	$\frac{2 k}{45}$	$\frac{6 k}{45}$	$\frac{7 k}{45}$	$\frac{8 k}{45}$	$\frac{4 k}{45}$

Determine (i) value of k
(ii) mean
(iii) variance of the distribution.
3. a) Given that the switchboard of a consultant's office receives on the average 0.8 calls per minute. Find the probability that
(i) there will be at least 2 calls
(ii) at most 4 calls in a given minute.
b) If a random variable ' X ' follows a normal distribution with mean 16.28 and standard deviation 0.12 . Find the probabilities (i) $P(16<X<16.5)$ (ii) $P(X>16.2) \quad 8 \mathrm{M}$
4. a) A population consists of $3,6,9,15$ and 27. List all possible samples of size 2 which can be drawn without replacement from the population. Find the mean and standard deviation of the population and of Sampling distribution of means (\bar{x}). 8 M
b) If a random sample of size 81 was taken whose variance is 20.25 and mean is 32 from a population, construct 98% confidence interval for population mean.
5. a) 20 people were attacked by a disease and only 18 survived. Will you reject the hypothesis that the survival rate if attacked by this disease is 85% in favour of the hypothesis that is more at 5% level.
b) To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measure the I.Q. The results are as follows:

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at $\alpha=0.05$.
(Assume, both the samples drawn from normal population). 8 M
6. The following are the weight losses of certain machine parts (in milligrams) due to friction, when 3 different lubricants were used under controlled conditions:

Lubricant A	Lubricant B	Lubricant C
12.2	10.9	12.7
11.8	5.7	19.9
13.1	13.5	13.6
11.0	9.4	11.7
3.9	11.4	18.3
4.1	15.7	14.3

Test whether the differences among the 3 sample means can be attributed to chance at the level of significance 0.01 .

